Answer:
The change in temperature per minute for the sample, dT/dt is 71.[tex]\overline {6}[/tex] °C/min
Step-by-step explanation:
The given parameters of the question are;
The specific heat capacity for glass, dQ/dT = 0.18 (kcal/°C)
The heat transfer rate for 1 kg of glass at 20.0 °C, dQ/dt = 12.9 kcal/min
Given that both dQ/dT and dQ/dt are known, we have;
[tex]\dfrac{dQ}{dT} = 0.18 \, (kcal/ ^{\circ} C)[/tex]
[tex]\dfrac{dQ}{dt} = 12.9 \, (kcal/ min)[/tex]
Therefore, we get;
[tex]\dfrac{\dfrac{dQ}{dt} }{\dfrac{dQ}{dT} } = {\dfrac{dQ}{dt} } \times \dfrac{dT}{dQ} = \dfrac{dT}{dt}[/tex]
[tex]\dfrac{dT}{dt} = \dfrac{\dfrac{dQ}{dt} }{\dfrac{dQ}{dT} } = \dfrac{12.9 \, kcal / min }{0.18 \, kcal/ ^{\circ} C } = 71.\overline 6 \, ^{\circ } C/min[/tex]
For the sample, we have the change in temperature per minute, dT/dt, presented as follows;
[tex]\dfrac{dT}{dt} = 71.\overline 6 \, ^{\circ } C/min[/tex]