Answer:
[tex] \huge \boxed{ \boxed{z = 3}}[/tex]
Step-by-step explanation:
to understand this
you need to know about:
let's solve:
- [tex] \sf simplify \: substraction : \\ \frac{3}{ \frac{z - 2}{z} } = 3z[/tex]
- [tex] \sf simplify \: complex \: fractio n : \\ \frac{3z}{z - 2} = 3z[/tex]
- [tex] \sf cross \: multiplication : \\ 3z = 3z(z - 2)[/tex]
- [tex] \sf divide \: both \: sides \: by \: 3z : \\ \frac{3z}{3z} = \frac{3z(z - 2)}{3z} \\ 1 = z - 2[/tex]
- [tex] \sf add \: 2 \: to \: bot h \: sides : \\ z - 2 + 2 = 1 + 2 \\ \therefore \: z = 3[/tex]