Respuesta :

Answer:

Image 1

[tex]\tan A = \frac{45}{24}= \frac{15}{8}[/tex]

[tex]\tan B = \frac{24}{45} = \frac{8}{15}[/tex]

Image 2

[tex]\tan D = \frac{15}{36} = \frac{5}{12}[/tex]

[tex]\tan E = \frac{36}{15} = \frac{12}{5}[/tex]

Image 3

[tex]\tan P = \frac{32}{24} = \frac{4}{3}[/tex]

[tex]\tan Q = \frac{24}{32} = \frac{3}{4}[/tex]

Step-by-step explanation:

Trigonometrically speaking, the tangent of an angle in a right triangle is the ratio of the length opposite to the angle to the length adjacent to the angle. Then, we solve for each case:

Image 1

[tex]\tan A = \frac{45}{24}= \frac{15}{8}[/tex]

[tex]\tan B = \frac{24}{45} = \frac{8}{15}[/tex]

Image 2

[tex]\tan D = \frac{15}{36} = \frac{5}{12}[/tex]

[tex]\tan E = \frac{36}{15} = \frac{12}{5}[/tex]

Image 3

[tex]\tan P = \frac{32}{24} = \frac{4}{3}[/tex]

[tex]\tan Q = \frac{24}{32} = \frac{3}{4}[/tex]