A rectangular piece of sheet metal
(18 in. x 12 in.) is to be used to make
an open box (no lid). Equal squares will
be cut out of each corner, and the edges
folded up to make the box. If you wish
to maximize the volume, what should
the size of each small square be?
What is the maximum volume?

A rectangular piece of sheet metal 18 in x 12 in is to be used to make an open box no lid Equal squares will be cut out of each corner and the edges folded up t class=

Respuesta :

Answer:

x = 2.354 in

Maximum volume = 228.162 in³

Step-by-step explanation:

Size of the metal sheet = (18 in × 12 in)

Let the height of the box = x in

Then length of the box = (18 - 2x) in

Width of the box = (12 - 2x) in  

Now volume of the rectangular box (V) = Length × Width × height

                                                                 = (18 - 2x) × (12 - 2x) × x

                                                                 = x[18(12 - 2x) - 2x(12 - 2x)]

                                                                 = x[216 - 36x - 24x + 4x²]

                                                                 = x[216 - 60x + 4x²]

                                                                 = (4x³ - 60x² + 216x) in³

For maximum volume, we will find the derivative of the volume and equate it to zero.

[tex]\frac{dV}{dx}=\frac{d}{dx}(4x^3-60x^2+216x)[/tex]

V' = 12x² - 120x + 216

V' = 0

12x² - 120x + 216 = 0

x² - 10x + 18 = 0

By quadratic formula,

x = [tex]\frac{10\pm\sqrt{(-10)^2-4(1)(18)}}{2(1)}[/tex]

x = 5 ± √7

x = 7.646, 2.354

But for 7.646, volume of the box will be negative.

Therefore, (x = 2.354 in) will be value of x for maximum volume of the box.

Maximum volume of the box = 4(2.354)³ - 60(2.354)² + 216(2.354)

                                                = 228.162 in³