Respuesta :

Given:

[tex]\Delta DE F\sim \Delta DST[/tex]

[tex]DE=40, EF=4x-4,DS=10,ST=11[/tex]

To find:

The value of x.

Solution:

We have,

[tex]\Delta DE F\sim \Delta DST[/tex]

The corresponding sides of the similar triangles are proportional.

[tex]\dfrac{DE}{DS}=\dfrac{EF}{ST}[/tex]

On substituting the given values, we get

[tex]\dfrac{40}{10}=\dfrac{4x-4}{11}[/tex]

[tex]4=\dfrac{4x-4}{11}[/tex]

Multiply both sides by 11.

[tex]4\times 11=4x-4[/tex]

[tex]44=4x-4[/tex]

Add 4 on both sides.

[tex]44+4=4x[/tex]

[tex]48=4x[/tex]

Divide both sides by 4.

[tex]\dfrac{48}{4}=x[/tex]

[tex]12=x[/tex]

The value of x is 12. Therefore, the correct option is D.