Respuesta :

Answer:

  [tex]\frac{dy}{dx} = (x+3)^{4} (7)(x-5)^{6} + (x-5)^{7} (4)(x+3)^{3}[/tex]

The values of  x are x = -3 ,5   and [tex]x = \frac{-1}{11}[/tex]

Step-by-step explanation:

Step(i):-

Given that the function

                      y = (x+3)⁴(x-5)⁷ ...(i)

Apply UV formula

[tex]\frac{dy}{dx} = U^{l} V+ U V^{l}[/tex]

Differentiating equation (i) with respective to 'x ', we get

                 [tex]\frac{dy}{dx} = (x+3)^{4} (7)(x-5)^{6} + (x-5)^{7} (4)(x+3)^{3}[/tex]

Step(ii):-

Given that

        [tex]\frac{dy}{dx} = 0[/tex]

[tex](x+3)^{4} (7)(x-5)^{6} + (x-5)^{7} (4)(x+3)^{3} =0[/tex]

[tex](x+3)^{3}(x-5)^{6} (7(x+3)+4(x-5))[/tex]  =0

[tex](x+3)^{3}(x-5)^{6} =0 and (7(x+3)+4(x-5)) =0[/tex]

x = -3 and x=5   and 7x +21 +4x -20 =0

x = -3 and x=5   and   [tex]x = \frac{-1}{11}[/tex]