Respuesta :

Given:

First term of a geometric series = a

Common ratio of the geometric series = [tex]\sqrt{3}[/tex]

To prove:

[tex]S_{10}=121a(\sqrt{3}+1)[/tex]

Solution:

The sum of first n terms of geometric series is

[tex]S_n=\dfrac{a(r^n-1)}{r-1}[/tex]

Where, a is the first term and r is the common ratio.

Putting n=10 and [tex]r=\sqrt{3}[/tex] in the above formula, to get the sum of 10 terms.

[tex]S_{10}=\dfrac{a((\sqrt{3})^{10}-1)}{\sqrt{3}-1}[/tex]

[tex]S_{10}=\dfrac{a(243-1)}{\sqrt{3}-1}[/tex]

[tex]S_{10}=\dfrac{242a}{\sqrt{3}-1}[/tex]

Rationalizing the denominator, we get

[tex]S_{10}=\dfrac{242a}{\sqrt{3}-1}\times \dfrac{\sqrt{3}+1}{\sqrt{3}+1}[/tex]

[tex]S_{10}=\dfrac{242a(\sqrt{3}+1)}{(\sqrt{3})^2-1^2}[/tex]

[tex]S_{10}=\dfrac{242a(\sqrt{3}+1)}{3-1}[/tex]

[tex]S_{10}=\dfrac{242a(\sqrt{3}+1)}{2}[/tex]

[tex]S_{10}=121a(\sqrt{3}+1)[/tex]

Hence proved.