100 POINTS 100 POINTS 100 POINTS 100 POINTS I WILL MARK BRAINLIEST
JUST ANSWER CORRECTLY THE ANSWER 12 IS WRONG PLEASE GIVE THE RIGHT ANSWER

100 POINTS 100 POINTS 100 POINTS 100 POINTS I WILL MARK BRAINLIEST JUST ANSWER CORRECTLY THE ANSWER 12 IS WRONG PLEASE GIVE THE RIGHT ANSWER class=

Respuesta :

Answer:

Step-by-step explanation:

given tanB= 4/3

so sinB=4/5

n cosB=3/5

given BC=15

BA=BC*cosB

=15*3/5

=9

AC=BC*sinA

=15*4/5

=12

Triangle ABC and DBE are similar by AAA

DB= BA-AD

=9-3

=6

DB/BA=DE/AC

6/9=DE/12

DE=12*6/9

=8

Answer:

DE = 8

Step-by-step explanation:

ΔABC and ΔDBE are similar.

As they share the same angles, the sides are in proportion to each other.

Therefore, we can solve using ratios.

Tan trigonometric ratio

[tex]\sf \tan(\theta)=\dfrac{O}{A}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle

Given:

  [tex]\sf \tan (B)=\dfrac{4}{3}[/tex]

Therefore:

[tex]\implies \sf \dfrac{DE}{BD}=\dfrac{AC}{BA}=\dfrac{4x}{3x}[/tex]

We know that BC = 15 and that AC : BA = 4x : 3x

Using Pythagoras' Theorem:

[tex]\implies \sf (3x)^2+(4x)^2=15^2[/tex]

[tex]\implies \sf 9x^2+16x^2=225[/tex]

[tex]\implies \sf x^2(9+16)=225[/tex]

[tex]\implies \sf x^2=9[/tex]

[tex]\implies \sf x=3[/tex]

Therefore,

⇒ AC = 4 · 3 = 12

⇒ BA = 3 · 3 = 9

Now we have found the length of BA, we can find the length of BD:

⇒ BD = BA - DA

⇒ BD = 9 - 3

⇒ BD = 6

As DE : BD = 4x : 3x  and  BD = 6 then:

⇒ 3x = 6

⇒ x = 2

Therefore, to find DE, substitute x = 2:

⇒ DE = 4x

⇒ DE = 4(2)

⇒ DE = 8