Answer:
Step-by-step explanation:
From the given information:
sample size n = 100
Since the population is assumed to be normal. then:
[tex]\overline X _{state} - \overline X_{private} \sim N(\overline X _{state}-\overline X _{private, SD^2_{state} + SD^2_private} -2\times Cov(\overline X _{state} - \overline X_{private}})}[/tex]
[tex]\overline X _{state} - \overline X_{private} \sim N(4.5-4.1, 0.8^2 + 0.2^2 -2\times 0})}[/tex]
[tex]\overline X _{state} - \overline X_{private} \sim N(0.4, 0.68})}[/tex]
The test statistics:
[tex]z = \dfrac{\overline X_{state} - \overline X_{private} }{ \sqrt{\dfrac{\sigma^2_{state}}{n } + \dfrac{\sigma^2_{private}}{n } } }[/tex]
[tex]z = \dfrac{0.4 }{ \sqrt{\dfrac{1.5811^2}{100 } + \dfrac{1^2}{100 } } }[/tex]
z = 2.138
Using the z tables;
P-value = (Z> 2.138)
P-value = 1 - (Z<2.138)
P-value = 1 - 0.9837
P-value = 0.0163
Decision rule: to reject the null hypothesis if the p-value is less than the significance level
Conclusion: We reject the null hypothesis and conclude that there is enough evidence to conclude that the average time it requires for the students to graduate from a private university is lesser than that of the time it takes such student to graduate from the California state university system.