Respuesta :
Answer:
Let A represent no of Parka produced
Let B be number of Goose Produced
Let C be number of Number of Pants
Let D be number of Gloves
A', B', C' and D' are shortages in production if any. The range of these variables will be from 0 to Demand.
Out objective is to plan our production to maximize net profit (Profit-Penalty).
Maximize
P = 30A + 40B + 20C + 10D - 15A' - 20B' - 10C' - 8D'
s.t
0.3A + 0.3B + 0.25C + 0.15D ≤ 1000
0.25A + 0.35B + 0.30C + 0.10D ≤ 1000
0.45A + 0.50B + 0.40C + 0.22D ≤ 1000
0.15A + 0.15B + 0.10C + 0.05D ≤ 1000
0 ≤ A' ≤ 800
0 ≤ B' ≤ 750
0 ≤ C' ≤ 600
0 ≤ D' ≤ 500
The LP problem is:
- Maximize [tex]z= 30x_1 + 40x_2 + 20x_3 +10x_4 - 15s_1 -20s_2 - 10s_3 - 8s_4[/tex]
Subject to
- [tex]0.3x_1 + 0.3x_2 + 0.25x_3+0.15x_4 \le 1000[/tex]
- [tex]0.25x_1 + 0.35x_2 + 0.3x_3+0.1x_4 \le 1000[/tex]
- [tex]0.45x_1 + 0.5x_2 + 0.45x_3+0.22x_4 \le 1000[/tex]
- [tex]0.15x_1 + 0.15x_2 + 0.1x_3+0.05x_4 \le 1000[/tex]
- [tex]x_1 + s_1 = 800[/tex], [tex]x_2 + s_2 = 750[/tex], [tex]x_3 + s_3 = 600[/tex], [tex]x_4 + s_4 = 500[/tex]
- Where: [tex]x_1,x_2,x_3,x_4 \ge 0[/tex]
Represent the products with x1, x2, x3 and x4, and the slack variables with s
From the table entries, we have the unit profit and the unit penalty.
So, the maximized function would be:
Total profit - Total penalty.
This gives
[tex]z= 30x_1 + 40x_2 + 20x_3 +10x_4 - 15s_1 -20s_2 - 10s_3 - 8s_4[/tex]
The constraints for cutting, insulating, sewing and packaging would be:
[tex]0.3x_1 + 0.3x_2 + 0.25x_3+0.15x_4 \le 1000[/tex]
[tex]0.25x_1 + 0.35x_2 + 0.3x_3+0.1x_4 \le 1000[/tex]
[tex]0.45x_1 + 0.5x_2 + 0.45x_3+0.22x_4 \le 1000[/tex]
[tex]0.15x_1 + 0.15x_2 + 0.1x_3+0.05x_4 \le 1000[/tex]
Lastly, the demand entries would be the sum of the product variables, and the slack variables.
So, we have:
[tex]x_1 + s_1 = 800[/tex]
[tex]x_2 + s_2 = 750[/tex]
[tex]x_3 + s_3 = 600[/tex]
[tex]x_4 + s_4 = 500[/tex]
Hence, the LP problem is:
Maximize [tex]z= 30x_1 + 40x_2 + 20x_3 +10x_4 - 15s_1 -20s_2 - 10s_3 - 8s_4[/tex]
Subject to
[tex]0.3x_1 + 0.3x_2 + 0.25x_3+0.15x_4 \le 1000[/tex]
[tex]0.25x_1 + 0.35x_2 + 0.3x_3+0.1x_4 \le 1000[/tex]
[tex]0.45x_1 + 0.5x_2 + 0.45x_3+0.22x_4 \le 1000[/tex]
[tex]0.15x_1 + 0.15x_2 + 0.1x_3+0.05x_4 \le 1000[/tex]
[tex]x_1 + s_1 = 800[/tex], [tex]x_2 + s_2 = 750[/tex], [tex]x_3 + s_3 = 600[/tex], [tex]x_4 + s_4 = 500[/tex]
Where:
[tex]x_1,x_2,x_3,x_4 \ge 0[/tex]
Read more about linear programming models at:
https://brainly.com/question/15356519