Respuesta :

Answer:

The equation of the elipse is

[tex]\frac{x^2}{169} + \frac{y^2}{25} = 1[/tex]

Step-by-step explanation:

Equation of an elipse:

The equation of a elipse with centre [tex](x_c,y_c)[/tex] has the following format:

[tex]\frac{(x - x_c)^2}{a^2} + \frac{(y - y_c)^2}{b^2} = 1[/tex]

Centre at (0,0):

Means that [tex](x_c,y_c) = (0,0)[/tex].

So

[tex]\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1[/tex]

Vertex at (13,0):

Vertex at 13 means that [tex]a = 13, a^2 = 13^2 = 169[/tex]

Focus at (-12,0):

Means that [tex]c = 12, c^2 = 12^2 = 144[/tex]

We have that:

[tex]a^2 = b^2 + c^2[/tex]

So

[tex]169 = b^2 + 144[/tex]

[tex]b^2 = 25[/tex]

So, the equation of the elipse is

[tex]\frac{x^2}{169} + \frac{y^2}{25} = 1[/tex]