Respuesta :

Answer:

[tex]y = -\frac{4}{3}x+ 4[/tex]

Explanation:

Given

[tex](x_1,y_1)=(-3,8)[/tex]

[tex](x_2,y_2)=(0,4)[/tex]

Required

Determine the line equation

First, calculate the slope (m)

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

This gives:

[tex]m = \frac{4-8}{0 - (-3)}[/tex]

[tex]m = \frac{4-8}{0 +3}[/tex]

[tex]m = \frac{-4}{3}[/tex]

[tex]m = -\frac{4}{3}[/tex]

The equation is then calculated using:

[tex]y = m(x - x_2) + y_2[/tex]

Where

[tex]m = -\frac{4}{3}[/tex] and [tex](x_2,y_2)=(0,4)[/tex]

So, we have:

[tex]y = -\frac{4}{3}(x-0) + 4[/tex]

[tex]y = -\frac{4}{3}x+0 + 4[/tex]

[tex]y = -\frac{4}{3}x+ 4[/tex]