Answer:
See Below.
Step-by-step explanation:
Statements: Reasons:
[tex]\displaystyle 1)\text{ } \Delta APB \text{ and } \Delta AQC \text{ are equilateral triangles}[/tex] Given
[tex]\displaystyle 2) \text{ } m \angle PAB = 60[/tex] Definition of equilateral.
[tex]3)\text{ } m \angle QAC = 60[/tex] Definition of equilateral.
[tex]4)\text{ } m\angle PAB = m\angle QAC[/tex] Substitution
[tex]5)\text{ } m\angle PAC=m\angle PAB+m\angle BAC[/tex] Angle Addition
[tex]\displaystyle 6)\text{ } m\angle QAB=m\angle QAC+m\angle BAC[/tex] Angle Addition
[tex]7)\text{ } m\angle QAB=m\angle PAB+m\angle BAC[/tex] Substitution
[tex]\displaystyle 8)\text{ } m\angle PAC=m\angle QAB[/tex] Substitution
[tex]9)\text{ } PA=BA[/tex] Definition of equilateral
[tex]10)\text{ } AC=AQ[/tex] Definition of equilateral
[tex]\displaystyle 11)\text{ } \Delta PAC \cong \Delta BAQ[/tex] Side-Angle-Side Congruence*
[tex]\displaystyle 12)\text{ } PC=BQ[/tex] CPCTC
* SAS Congruence:
PA = BA
∠PAC = ∠QAB
AC = AQ