Respuesta :

Given:

The statement is

[tex](1+i)^2=2i[/tex]

To prove:

The given statement [tex](1+i)^2=2i[/tex].

Solution:

We have,

[tex](1+i)^2=2i[/tex]

Taking LHS, we get

[tex]LHS=(1+i)^2[/tex]

[tex]LHS=(1)^2+2(1)(i)+(i)^2[/tex]         [tex][\because (a+b)^2=a^2+2ab+b^2][/tex]

[tex]LHS=1+2i+(-1)[/tex]         [tex][\because i^2=-1][/tex]

On further simplification, we get

[tex]LHS=1+2i-1[/tex]

[tex]LHS=2i[/tex]

[tex]LHS=RHS[/tex]

Hence proved.