Respuesta :
Answer:
Step-by-step explanation:
y = ax² + bx + c
~~~~~~~
(4, - 2), (8, 6), (2, 0)
a(4²) + b(4) + c = - 2
a(8²) + b(8) + c = 6
a(2²) + b(2) + c = 0
16a + 4b + c = - 2 .............. (1)
64a + 8b + c = 6 ............... (2)
4a + 2b + c = 0 ................. (3)
a = 0.5 ; b = - 4 ; c = 6
y = 0.5x² - 4x + 6
Part A: (0, 6), (6, 0)
Part B: (0,6)
Part C: (6, 0)
Part D: [ 4, ∞ )

The quadratic function has the form f(x) = ax² + bx + c, where a, b, and c are non-zero values, and the calculation of the values can be defined as follows:
Quadratic function:
vertex point of graph function= (4,-2)
points= (8,6) and (2,0)
Using the formula of a quadratic function:
[tex]y = ax^2 + bx + c[/tex]
putting the value into the above-given formula:
[tex]\to (4, - 2), (8, 6), (2, 0)\\\\\to a(4^2) + b(4) + c = - 2\\\\\to 16 a + 4b + c = - 2.........................(a)\\\\\to a(8^2) + b(8) + c = 6\\\\\to 64a + 8b + c = 6......................................(b)\\\\\to a(2^2) + b(2) + c = 0\\\\\to 4a + 2b + c = 0................................(c)\\\\[/tex]
Computing the value of a,b, and c:
[tex]\to a = 0.5\\\\ \to b = - 4 \\\\ \to c = 6\\\\[/tex]
Putting the value of a, b, and c values into the quadratic function:
[tex]\to y = 0.5x^2 - 4x + 6[/tex]
So, the calculated points are:
Part A: (0,6)
Part B: (2,0) and (6,0)
Part C: x>4
Part D: positive the parabola upwards
- Please find the correct question and graph file in the attachment.
Find out more about the quadratic function here:
brainly.com/question/5975436

