Consider the following work breakdown structure: Time Estimates (days) Activity Precedes Optimistic Most Likely Pessimistic Start A,B - - - A C,D 44 50 56 B D 45 60 75 C E 42 45 48 D F 31 40 49 E F 27 36 39 F End 58 70 82 What is the probability that the critical path for this project will be completed within 210 days

Respuesta :

Answer: the probability that the critical path for this project will be completed within 210 days is 0.99725

Step-by-step explanation:

Given that;

Work break down is;  

 Time Estimates (days)

Activity  Precedes  Optimistic  Most Likely  Pessimistic  

Start          A,B              -                    -                   -  

A               C,D             44                50                 56  

B               D                45                60                  75  

C               E                42                45                   48  

D               F                31                 40                   49  

E               F                27                36                   39  

F              End            58                70                   82

we know that;

Expected Time = ( Optimistic Time + ( 4 × most likely time) + pessimistic time) / 6

and

Variance = [( pessimistic time - Optimistic time) / 6 ]²

so

ACTIVITY              EXPECTED TIME                                 VARIANCE

A                   (44 + (4 × 50) + 56) / 6 = 50                    ((56 - 44) / 6)² = 4

B                   (45 + (4 × 60) + 75) / 6 = 60                    ((75 - 45) / 6)² = 25

C                  (42 + (4 × 45) + 48) / 6 = 45                    ((48 - 42) / 6)² = 1

D                   (31 + (4 * 40) + 49) / 6 = 40                     ((49 - 31) / 6)² = 9

E                   (27 + (4 * 36) + 39) / 6 = 35                     ((39 - 27) / 6)² = 4

F                   (58 + (4 * 70) + 82) / 6 = 70                     ((82 - 58) / 6)² = 16

ACTIVITY     DURATION      ES        EF        LS        LF        SLACK

A                   50                      0        50         0         50            0

B                   60                      0        60        30        90           30

C                   45                     50       95        50        95            0

D                   40                     60      100        90       130          30

E                    35                    95       130        95       130           0

F                    70                    130     200       130      200           0

FORWARD PASS:

ES = MAXIMUM EF OF ALL PREDECESSOR ACTIVITIES; 0 IF NO PREDECESSORS ARE PRESENT.

EF = ES + DURATION OF THE ACTIVITY.

CRITICAL PATH = PATH WITH THE LONGEST COMBINED DURATION VALUE AND 0 SLACK.

CRITICAL PATH = ACEF

DURATION OF PROJECT = 200

Now the probability

VARIANCE OF CRITICAL PATH = SIGMA(VARIANCE OF THE CRITICAL PATH) = 25

STANDARD DEVIATION OF CRITICAL PATH = SQRT(VARIANCE OF CRITICAL PATH) = 5

EXPECTED TIME = DURATION OF THE PROJECT = CRITICAL PATH = 200

DUE TIME = 210

Z = (DUE TIME - EXPECTED TIME) / STANDARD DEVIATION OF CRITICAL PATH)

Z = (210 - 200) / 5 = 2

Now form the Normal Distribution Table;

Z = 0.99725

Therefore, the probability that the critical path for this project will be completed within 210 days is 0.99725