Respuesta :

Answer:

Area of the shaded region = 87.5 cm²

Step-by-step explanation:

Area of the shaded region = Area of the sector - Area of the triangle

Area of the sector = [tex]\frac{\theta}{360}\times (2\pi r)[/tex]

Here, θ = Central angle subtended by the arc

r = radius of the circle

Area of the given sector = [tex]\frac{120}{360}\times (\pi r^{2})[/tex]

                                         = 48π

                                         = 150.796 cm²

From ΔABC,

Central angle BAC = 120°

Since, AD is an angle bisector of ∠BAC,

m∠BAD = m∠CAD = 60°

∠ADC = 90° [By theorem, line from the center to any chord is a perpendicular bisector of the chord in a circle)

Now,  cos(60) = [tex]\frac{AD}{AC}[/tex]

[tex]\frac{1}{2}=\frac{AD}{12}[/tex]

AD = 6

Similarly, sin(60) = [tex]\frac{DC}{AC}[/tex]

[tex]\frac{\sqrt{3} }{2}=\frac{DC}{12}[/tex]

DC = [tex]6\sqrt{3}[/tex]

Since, BC = 2(DC) = [tex]12\sqrt{3}[/tex]

Area of ΔABC = [tex]\frac{1}{2}(\text{Height})(\text{Base})[/tex]

                        = [tex]\frac{1}{2}(AD)(BC)[/tex]

                        = [tex]\frac{1}{2}(6)(12\sqrt{3})[/tex]

                        = [tex]36\sqrt{3}[/tex] cm²

                        = 62.35 cm²

Now area of the shaded region = (150.796 - 62.35)

                                                     = 87.456

                                                     ≈ 87.5 cm²

Ver imagen eudora