Respuesta :

Answer:

[tex]y = {(x - 4)}^{2} - 1[/tex]

Step-by-step explanation:

[tex]y = a(x - h)^{2} + k[/tex]

We know the value of h and k.

[tex]y = a(x - 4)^{2} - 1[/tex]

The graph passes through (2,3). Therefore, substitute x = 2 and y = 3.

[tex]3 = a {(2 - 4)}^{2} - 1[/tex]

Solve for a.

[tex]3 = a {( - 2)}^{2} - 1 \\ 3 = 4a - 1 \\ 3 + 1 = 4a \\ 4 = 4a \\ \frac{4}{4} = a \\ 1 = a[/tex]

Therefore, a = 1. Rewrite the equation.

[tex]y = 1 {( x - 4)}^{2} - 1 \\ y = {(x - 4)}^{2} -1[/tex]

Answer Check

Substitute x = 2 and y = 3 in the equation.

[tex]3 = {(2 - 4)}^{2} - 1 \\ 3 = {( - 2)}^{2} - 1 \\ 3 = 4 - 1 \\ 3 = 3[/tex]

The equation is true for (2,3). Therefore, the answer is —

[tex]y = {(x - 4)}^{2} - 1[/tex]