Answer:
Step-by-step explanation:
Given the expression:
[tex]\lim_{n \to \infty} \frac{e^x+e^{-x}}{e^x-e^{-x}}\\[/tex]
factor out e^x from the numerator and denominator
[tex]\lim_{n \to \infty} \frac{e^x+e^{-x}}{e^x-e^{-x}}\\\lim_{n \to \infty} \frac{e^x(1+e^{-2x})}{e^x(1-e^{-2x})}\\\lim_{n \to \infty} \frac{(1+e^{-2x})}{(1-e^{-2x})}\\ = \frac{(1+e^{-2(\infty)})}{(1-e^{-2(infty)})}\\= \frac{1+0}{1-0}\\= 1\\[/tex]
Hence the limit of the given function is 1