Answer:
The inverse of given function is
[tex]f^{-1} ( x ) = (2x+7)^{\frac{1}{3} }[/tex]
Step-by-step explanation:
Explanation:-
Given function
[tex]f(x) = \frac{x^{3}-7 }{2}[/tex]
let y = f(x)
[tex]y = f(x) = \frac{x^{3}-7 }{2}[/tex]
⇒ 2 y = x³ - 7
⇒ 2y +7 = x³
⇒ [tex]x = ( 2 y +7 )^{\frac{1}{3} }[/tex]
⇒[tex]f^{-1} ( y ) = (2y+7)^{\frac{1}{3} }[/tex]
The inverse of given function is
[tex]f^{-1} ( x ) = (2x+7)^{\frac{1}{3} }[/tex]