Answer:
[tex]m(p) = 6p - 54[/tex]
Step-by-step explanation:
Given
[tex]P(m) = \frac{m}{6} + 9[/tex]
Required
Determine the inverse function
[tex]P(m) = \frac{m}{6} + 9[/tex]
Represent P(m) as P
[tex]P = \frac{m}{6} + 9[/tex]
Swap the positions of P and m
[tex]m = \frac{p}{6} + 9[/tex]
We are to make p the subject.
Subtract 9 from both sides
[tex]m -9= \frac{p}{6} + 9-9[/tex]
[tex]m -9= \frac{p}{6}[/tex]
Multiply through by 6
[tex]6(m -9)= \frac{p}{6} * 6[/tex]
[tex]6(m -9)= p[/tex]
[tex]6m -54= p[/tex]
Rearrange:
[tex]p = 6m -54[/tex]
Swap the positions of P and m
[tex]m = 6p - 54[/tex]
[tex]m(p) = 6p - 54[/tex]