Answer:
The solution to the equation [tex]\frac{1}{4}x+2=\frac{-5}{8}x-5[/tex] is [tex]\mathbf{x=-8}[/tex]
Option A is correct option.
Step-by-step explanation:
What is the solution to the equation [tex]\frac{1}{4}x+2=\frac{-5}{8}x-5[/tex]
Solving the equation
[tex]\frac{1}{4}x+2=\frac{-5}{8}x-5[/tex]
Subtracting 2 on both sides
[tex]\frac{1}{4}x+2-2=\frac{-5}{8}x-5-2\\\frac{1}{4}x=\frac{-5}{8}x-7[/tex]
Adding 5/8x on both sides
[tex]\frac{1}{4}x+\frac{5}{8}x=\frac{-5}{8}x-7+\frac{5}{8}x\\\frac{2x+5x}{8}=-7 \\\frac{7x}{8}=-7[/tex]
Multiply both sides by 8/7
[tex]\frac{7x}{8}\times \frac{8}{7}=-7 \times \frac{8}{7}\\x=-8[/tex]
So, we get x = -8
The solution to the equation [tex]\frac{1}{4}x+2=\frac{-5}{8}x-5[/tex] is [tex]\mathbf{x=-8}[/tex]
Option A is correct option.