Respuesta :

Answer:

Please check the explanation.

Step-by-step explanation:

Given

f(x) = 3x + x³

Taking differentiate

[tex]\frac{d}{dx}\left(3x+x^3\right)[/tex]

[tex]\mathrm{Apply\:the\:Sum/Difference\:Rule}:\quad \left(f\pm g\right)'=f\:'\pm g'[/tex]

[tex]=\frac{d}{dx}\left(3x\right)+\frac{d}{dx}\left(x^3\right)[/tex]

solving

[tex]\frac{d}{dx}\left(3x\right)[/tex]

[tex]\mathrm{Take\:the\:constant\:out}:\quad \left(a\cdot f\right)'=a\cdot f\:'[/tex]

[tex]=3\frac{d}{dx}\left(x\right)[/tex]

[tex]\mathrm{Apply\:the\:common\:derivative}:\quad \frac{d}{dx}\left(x\right)=1[/tex]

[tex]=3\cdot \:1[/tex]

[tex]=3[/tex]

now solving

[tex]\frac{d}{dx}\left(x^3\right)[/tex]

[tex]\mathrm{Apply\:the\:Power\:Rule}:\quad \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1}[/tex]

[tex]=3x^{3-1}[/tex]

[tex]=3x^2[/tex]

Thus, the expression becomes

[tex]\frac{d}{dx}\left(3x+x^3\right)=\frac{d}{dx}\left(3x\right)+\frac{d}{dx}\left(x^3\right)[/tex]

                    [tex]=3+3x^2[/tex]

Thus,

f'(x) = 3 + 3x²

Given that f'(x) = 15

substituting the value  f'(x) = 15 in f'(x) = 3 + 3x²

f'(x) = 3 + 3x²

15 =  3 + 3x²

switch sides

3 + 3x² = 15

3x² = 15-3

3x² = 12

Divide both sides by 3

x² = 4

[tex]\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}[/tex]

[tex]x=\sqrt{4},\:x=-\sqrt{4}[/tex]

[tex]x=2,\:x=-2[/tex]

Thus, the value of x​ will be:

[tex]x=2,\:x=-2[/tex]