Step-by-step explanation:
The slope-intercept form of an equation of a line:
[tex]y=mx+b[/tex]
[tex]m[/tex] - slope
[tex]b[/tex] - y-intercept
[tex]1.\\4x+y=1\qquad|\text{subtract}\ 4x\ \text{from both sides}\\\\y=-4x+1\\\\2.\\x-y=6\qquad|\text{subtract}\ x\ \text{from both sides}\\\\-y=-x+6\qquad|\text{change the signs}\\\\y=x-6\\\\3.\\6x-3y=-9\qquad|\text{subtract}\ 6x\ \text{from both sides}\\\\-3y=-6x-9\qquad|\text{divide both sides by (-3)}\\\\y=2x+3[/tex]
[tex]4.\\-12x-4y=2\qquad|\text{add}\ 12x\ \text{to both sides}\\\\-4y=12x+2\qquad|\text{divide both sides by (-4)}\\\\y=-3x-0.5\\\\5.\\2x+5y=-10\qquad|\text{subtract}\ 2x\ \text{from both sides}\\\\5y=-2x-10\qquad|\text{divide both sides by 5}\\\\y=-0.4x-2\\\\6.\\-x-10y=20\qquad|\text{add}\ x\ \text{to both sides}\\\\-10y=x+20\qquad|\text{divide both sides by (-10)}\\\\y=-0.1x-2[/tex]