Respuesta :

Given:

The number is [tex]\sqrt{-11}[/tex].

To find:

The a+bi form of given number.

Solution:

We have,

[tex]\sqrt{-11}[/tex]

It can be written as

[tex]\sqrt{-11}=\sqrt{-1\times 11}[/tex]

[tex]\sqrt{-11}=\sqrt{-1}\times \sqrt{11}[/tex]      [tex][\because \sqrt{ab}=\sqrt{a}\sqrt{b}][/tex]

[tex]\sqrt{-11}=i\times \sqrt{11}[/tex]      [tex][\because \sqrt{-1}=i][/tex]

[tex]\sqrt{-11}=\sqrt{11}i[/tex]

Here, real part is missing. So, it can be taken as 0.

[tex]\sqrt{-11}=0+\sqrt{11}i[/tex]

So, a = 0 and [tex]b=\sqrt{11}[/tex].

Therefore, the a+bi form of given number is [tex]0+\sqrt{11}i[/tex].

Otras preguntas