Answer:
[tex]y = -3x +190[/tex]
Explanation:
See attachment.
From the attachment, we have the following parameters.
[tex](x_1,y_1) = (40,70)[/tex]
[tex](x_2,y_2) = (30,100)[/tex]
First, the slope of the dots must be calculated.
[tex]m = \frac{y_1 - y_2}{x_1 - x_2}[/tex]
This gives:
[tex]m = \frac{70-100}{40-30}[/tex]
[tex]m = \frac{-30}{10}[/tex]
[tex]m = -3[/tex]
Next, we calculate the linear equation using:
[tex]y - y_1 = m(x - x_1)[/tex]
Where
[tex]m = -3[/tex]
[tex](x_1,y_1) = (40,70)[/tex]
This gives:
[tex]y - 70 = -3(x - 40)[/tex]
[tex]y - 70 = -3x +120[/tex]
Make y the subject of the formula
[tex]y = -3x +120+70[/tex]
[tex]y = -3x +190[/tex]