Answer:
b. $22,276.71
Explanation:
From the given information:
using the basic time value of money function for PV of an annuity:
[tex]PV = P \Bigg [ \dfrac{1-(1+r)^{-n}}{r} \Bigg ][/tex]
where;
P = annual Periodic Payment
r = rate per period = 15%
n = number of periods = 25
Present value PV = 144000
[tex]144000= P \Bigg [ \dfrac{1-(1+0.15)^{-25}}{0.15} \Bigg ][/tex]
[tex]144000= P \Bigg [ \dfrac{1-(1.15)^{-25}}{0.15} \Bigg ][/tex]
[tex]144000= P \Bigg [ \dfrac{1-0.0303776}{0.15} \Bigg ][/tex]
[tex]144000= P \Bigg [ \dfrac{0.9696224}{0.15} \Bigg ][/tex]
[tex]144000= P \Bigg [6.464149333 \Bigg ][/tex]
[tex]P = \dfrac{144000}{6.464149333}[/tex]
P = $22276.71