Respuesta :
Answer:
The value [tex]N_A = 0.192 \ mol \cdot m^{-2} \cdot \ s[/tex]
Explanation:
From the question we are told that
The thickness of the air is [tex]z_2 - z_1 = 1 \ cm =0.01 \ m[/tex]
The temperature is [tex]T = 25^oc = 25 +273 = 298 \ K[/tex]
The total pressure is [tex]P_T = 1 atm = 1.01325*10^{5} \ Pa[/tex]
The partial pressure of Ammonia first side is [tex]P_{AO} = 0.9 \ atm = 0.9 * 1.01325*10^{5} = 91192.5 \ Pa[/tex]
The partial pressure of Ammonia to the second side is [tex]P_{A} = 0.1 \ atm = 0.1 * 1.0325*10^{5} = 10132.5 \ Pa[/tex]
Rate of flow of ammonia is
[tex]D_{AB} = 0.214 \ cm/s = \frac{0.214 }{10000} = 2.14 *10^{-5} \ m^2 /s[/tex]
Generally the molar flux of ammonia is mathematically represented as
[tex]N_A = \frac{D_{AB} * P_T }{RT(z_2 -z_1)} * ln [\frac{P_T - P_{Al}}{P_T - P_{AO}} ][/tex]
Here R is the gas constant with value
[tex]R = 8.314 \ m^3 \cdot Pa \cdot mol^{-1} \cdot K[/tex]
[tex]N_A = \frac{2.14 *10^{-5} * 1.01325*10^{5} }{8.314 *298 (0.01)} * ln [\frac{1 - 0.1}{1 - 0.9} ][/tex]
=> [tex]N_A = 0.192 \ mol \cdot m^{-2} \cdot \ s[/tex]