Answer:
a) 0.00070
b) 0.00050
c) 0.00022
d) 0.00016
e) 0.00005
Step-by-step explanation:
Standard error for proportion formula
S.E = √P(1 - P)/n
Where P = proportion
n = number of samples
Assume that the population proportion is 0.46. Compute the standard error of the proportion, σp, for sample sizes of a) 500,000
S.E = √P(1 - P)/n
= √0.46 × 0.54/500000
= √ 4.968 ×10^-7
= 0.0007048404
≈ 0.00070
b) 1,000,000
√P(1 - P)/n
= √0.46 × 0.54/1000000
= 0.0004983974
≈ 0.00050
c) 5,000,000
√P(1 - P)/n
= √0.46 × 0.54/5000000
= √ 4.968 ×10^-8
= 0.0002228901
≈ 0.00022
d) 10,000,000
√P(1 - P)/n
= √0.46 × 0.54/10000000
= √2.484 ×10^-8
= 0.0001576071
≈ 0.00016
e) 100,000,000
√P(1 - P)/n
= √0.46 × 0.54/100000000
= √2.484 × 10^-9
= 0.0000498397
= 0.00005