For the initial year of a summer camp, 56 girls and 64 boys enrolled. Each year thereafter, 18 more students enrolled in the camp. Let t be the time (in years) since the camp opened. Part A: Write a function rule for the total number of students enrolled t years after the camp opened.

Respuesta :

Answer:

[tex]f(t)=120+18t[/tex]

Explanation:

We know that for the initial year of a summer camp, 56 girls and 64 boys enrolled.

The total children enrolled for the initial year can be calculated as :

[tex]56+64=120[/tex]

Each year, 18 more students enrolled in the camp.

The variable ''[tex]t[/tex]'' represents the time in years since the camp opened.

The following expression :

[tex]18t[/tex]  

represents the extra children enrolled each year

If we sum, we can obtain the following expression :

[tex]120+18t[/tex]

which is the function [tex]f(t)[/tex] for the total number of students enrolled [tex]t[/tex] years after the camp opened.

The function rule is [tex]f(t)=120+18t[/tex]

For example, when [tex]t=0[/tex] ⇒

[tex]f(0)=120+18(0)=120[/tex]

which is the original amount of enrolled children when the summer camp opened.

When [tex]t=3[/tex] ⇒

[tex]f(3)=120+18(3)=174[/tex]

which is the expected value for the total number of students enrolled 3 years after the camp opened.