Find the equation of the line.
The perpendicular bisector to the line segment with endpoints (-8,5) and (4,1).
The equation of the line is
y =

Respuesta :

Answer:

y = 3x + 9

Step-by-step explanation:

The perpendicular bisector to the line segment is passing through the midpoint of the line segment. Coordinates of midpoint are ( [tex]\frac{x_{1} +x_{2} }{2}[/tex] , [tex]\frac{y_{1} +y_{2} }{2}[/tex] )

Formula of slope is m = [tex]\frac{y_{2} -y_{1} }{x_{2} -x_{1} }[/tex]

Slopes of perpendicular lines are opposite reciprocals. So, if AB ⊥ CD , then [tex]m_{AB}[/tex] × [tex]m_{CD}[/tex] = - 1

y - [tex]y_{1}[/tex] = m ( x - [tex]x_{1}[/tex] )  

~~~~~~~~~~~

(- 8, 5)

(4, 1)

m = ( 5 - 1) / ( - 8 - 4) = - [tex]\frac{1}{3}[/tex]

Opposite reciprocal to ( - [tex]\frac{1}{3}[/tex] ) is 3

Coordinates of midpoint are ( - 2 , 3 )

y - 3 = 3 ( x + 2 )

y = 3x + 9