Respuesta :

Answer:

sin (2A+2B) = 0

Step-by-step explanation:

Given that,

cosec A= -2 and sec B= -2, A and B lie in the same quadrant.

We need to find the value of sin (2A+2B).

[tex]A=cosec^{-1}(-2)\\\\=-30[/tex]

And

[tex]B=\sec^{-1}(-2)\\\\=120^{\circ}[/tex]

To find the value of sin (2A+2B) as follows :

sin [2(-30)+2(120)] = sin (-60+240)

=sin (180)

= 0

So, the value of sin (2A+2B) is qual to 0.