evaluate the fermi function for an energy KT above the fermi energy. find the temperature at which there is a 1% probability that a state,

Respuesta :

Complete Question

Evaluate the Fermi function for an energy kT above the Fermi energy. Find the temperature at which there is a 1% probability that a state, with an energy 0.5 eV above the Fermi energy, will be occupied by an electron.

Answer:

a

The Fermi function for the energy KT is  [tex]F(E_o) = 0.2689[/tex]

b

The temperature is  [tex]T_k = 1261 \ K[/tex]

Step-by-step explanation:

From the question we are told that

   The energy considered is  [tex]E = 0.5 eV[/tex]

Generally the Fermi  function is mathematically represented as

       [tex]F(E_o) = \frac{1}{e^{\frac{[E_o - E_F]}{KT} } + 1 }[/tex]

    Here K is the Boltzmann constant with value [tex]k = 1.380649 *10^{-23} J/K[/tex]

            [tex]E_F[/tex]  is the Fermi energy

            [tex]E_o[/tex]  is the initial energy level which is mathematically represented as

     [tex]E_o = E_F + KT[/tex]

So

     [tex]F(E_o) = \frac{1}{e^{\frac{[[E_F + KT] - E_F]}{KT} } + 1}[/tex]

=>   [tex]F(E_o) = \frac{1}{e^{\frac{KT}{KT} } + 1}[/tex]

=>   [tex]F(E_o) = \frac{1}{e^{ 1 } + 1}[/tex]

=>   [tex]F(E_o) = 0.2689[/tex]

Generally the probability that a state, with an energy 0.5 eV above the Fermi energy, will be occupied by an electron is mathematically represented by the  Fermi  function as

     [tex]F(E_k) = \frac{1}{e^{\frac{[E_k - E_F]}{KT_k} } + 1 } = 0.01[/tex]

Here[tex]E_k[/tex] is that energy level that is  0.5 ev above the Fermi energy  [tex]E_k = 0.5 eV + E_F[/tex]

=>   [tex]F(E_k) = \frac{1}{e^{\frac{[[0.50 eV + E_F] - E_F]}{KT_k} } + 1 } = 0.01[/tex]

=>   [tex]\frac{1}{e^{\frac{0.50 eV ]}{KT_k} } + 1 } = 0.01[/tex]

=>   [tex]1 = 0.01 * e^{\frac{0.50 eV ]}{KT_k} } + 0.01[/tex]

=>   [tex]0.99 = 0.01 * e^{\frac{0.50 eV ]}{KT_k} }[/tex]

=>   [tex]e^{\frac{0.50 eV ]}{KT_k} } = 99[/tex]

Taking natural  log of both sides

=>   [tex]\frac{0.50 eV }{KT_k} } =4.5951[/tex]

=>    [tex]0.50 eV =4.5951 * K * T_k[/tex]

Note eV is electron volt and the equivalence in Joule is     [tex]eV = 1.60 *10^{-19} \ J[/tex]

So

     [tex]0.50 * 1.60 *10^{-19 } =4.5951 * 1.380649 *10^{-23} * T_k[/tex]

=>   [tex]T_k = 1261 \ K[/tex]