Respuesta :

Answer:

Step-by-step explanation:

10y2 - 17y + 12 = y + 16

10y2 - 17y + 12 - 16 = y

10y2 - 17y - 4 = y

10y2 -17y - y -4 = 0

10y2 -16y - 4 = 0

Now put formula

x = -b +- (square root) b2 - 4ac

                 2a

a = 10 b= -16 c= -4

y = -(-16) +- (square root) -16 - 4 (10) (-4)

                             2(10)

y = 16 +- (square root) -16 - 400

                                20

y = 16 +- (square root) -416

                         20

y = 16 +- 20.396

              20

Now this +- is the plus minus thingy in which two answers come

The first we will do is +

16 + 20.396                                         16 - 20.396

  20                                                             20

= 1.8198                                                           = -0.2198

Expressions can be simplified by reducing them to lower factors

The simplified expression is: [tex]\mathbf{x^8y^6\sqrt{110x} } }[/tex]

The expression is given as:

[tex]\mathbf{\sqrt{110x^{17}y^{12}}}[/tex]

Expand

[tex]\mathbf{\sqrt{110x^{17}y^{12}} =\sqrt{110} \times \sqrt{x^{17}} \times \sqrt{y^{12}} }[/tex]

Express square roots as exponents

[tex]\mathbf{\sqrt{110x^{17}y^{12}} =\sqrt{110} \times \sqrt{x^{17}} \times y^{12*1/2}} }[/tex]

[tex]\mathbf{\sqrt{110x^{17}y^{12}} =\sqrt{110} \times \sqrt{x^{17}} \times y^6} }[/tex]

Express 17 as  16 + 1

[tex]\mathbf{\sqrt{110x^{17}y^{12}} =\sqrt{110} \times \sqrt{x^{16 + 1}} \times y^6} }[/tex]

Split

[tex]\mathbf{\sqrt{110x^{17}y^{12}} =\sqrt{110} \times \sqrt{x^{16} \times x} \times y^6}[/tex]

Express square roots as exponents

[tex]\mathbf{\sqrt{110x^{17}y^{12}} =\sqrt{110} \times x^{16\times 1/2} \times \sqrt x \times y^6} }[/tex]

[tex]\mathbf{\sqrt{110x^{17}y^{12}} =\sqrt{110} \times x^8 \times \sqrt x \times y^6} }[/tex]

Rewrite as:

[tex]\mathbf{\sqrt{110x^{17}y^{12}} =\sqrt{110} \times \sqrt x \times x^8 \times y^6} }[/tex]

[tex]\mathbf{\sqrt{110x^{17}y^{12}} =\sqrt{110x} \times x^8 \times y^6} }[/tex]

[tex]\mathbf{\sqrt{110x^{17}y^{12}} =\sqrt{110x} \times x^8y^6} }[/tex]

[tex]\mathbf{\sqrt{110x^{17}y^{12}} =x^8y^6\sqrt{110x} } }[/tex]

Hence, the simplified expression is: [tex]\mathbf{x^8y^6\sqrt{110x} } }[/tex]

Read more about simplifying expressions at:

https://brainly.com/question/403991