Ron started a construction company. The net value of the company (in thousands of dollars) ttt months after its creation is modeled by
v(t)=2t^2-12t-14v(t)=2t
2
−12t−14v, left parenthesis, t, right parenthesis, equals, 2, t, squared, minus, 12, t, minus, 14
If a company's net value is 000 dollars, the company is breaking even. Ron wants to know how many months it will take for his company to break even.
1) Rewrite the function in a different form (factored or vertex) where the answer appears as a number in the equation.
v(t)=v(t)=v, left parenthesis, t, right parenthesis, equals
2) How many months after its creation does the company break even?

Respuesta :

Answer:

v(t)=2(t+1)(t-7)

7 months

Step-by-step explanation:

took the quiz

The number of months after its creation it will take the company to break even is; 7 months

How to Simplify Algebra?

We are given the net value of the company after t months to be represented by the equation;

v(t) = 2t² - 12t - 14

1) Now, we need to factorize this to get;

v(t) = 2[t² - 6t - 7]

When we factorize using the factors, we get;

v(t) = 2(t + 1)(t − 7)

2) Now, we are told that the company will break even when the net value is zero.

Thus;

2(t + 1)(t − 7) = 0

thus;

(t + 1) = 0 or t - 7 = 0

We have;

t = -1 or 7

t cannot be negative and so;

t = 7 months

Read more about Algebra at; https://brainly.com/question/723406

#SPJ2