Answer:
615.44 units squared
Step-by-step explanation:
Let the volume and surface area of the sphere be V and S respectively.
[tex]\therefore V = \frac{28}{3} \times S\\\\\therefore \frac{4}{3} \pi {r}^{3} = \frac{28}{3} \pi {r}^{2} \\ \\ \frac{ {r}^{3} }{ {r}^{2} } = \frac{28\pi}{3} \times \frac{3}{4\pi} \\ \\ r = 7 \: units \\ \\ \because S = 4\pi {r}^{2} \\ \\ \therefore \: S = 4 \times 3.14 \times {7}^{2} \\ \\ \therefore \: S = 12.56 \times 49 \\ \\ \therefore \: S =615.44 \: {units}^{2} [/tex]