Answer:
[tex]A = \frac{220}{3}[/tex]
[tex]B = \frac{160}{3}[/tex]
[tex]C = \frac{160}{3}[/tex]
Step-by-step explanation:
Given
[tex]A + B + C = 180[/tex]
[tex]B = C[/tex]
[tex]B = A- 20[/tex]
Required
Solve for A, B and C
The equation binding A, B and C have been written out (above)
Substitute C for B in [tex]A + B + C = 180[/tex]
[tex]A + B + B = 180[/tex]
[tex]A + 2B = 180[/tex]
Substitute A - 20 for B
[tex]A + 2(A - 20) = 180[/tex]
[tex]A + 2A - 40 = 180[/tex]
[tex]3A - 40 = 180[/tex]
Solve for 3A
[tex]3A = 180 + 40[/tex]
[tex]3A = 220[/tex]
[tex]A = \frac{220}{3}[/tex]
Solve for B in [tex]B = A- 20[/tex]
[tex]B = \frac{220}{3} - 20[/tex]
[tex]B = \frac{220 - 60}{3}[/tex]
[tex]B = \frac{160}{3}[/tex]
Recall that [tex]B = C[/tex]
[tex]C = \frac{160}{3}[/tex]