Esmerelda simplified a complex fraction. Her work is shown below. Negative 5 and one-fourth divided by three-halves = negative StartFraction 21 over 4 EndFraction divided by three-halves = (Negative StartFraction 21 over 4 EndFraction) (Three-halves) = Negative StartFraction 24 over 6 EndFraction = negative 4

Respuesta :

Given:

The complex fraction is

[tex]\dfrac{-5\dfrac{1}{4}}{\dfrac{3}{2}}[/tex]

Esmerelda simplified a complex fraction and steps are given.

To find:

The mistake of Esmerelda.

Solution:

We have,

[tex]\dfrac{-5\dfrac{1}{4}}{\dfrac{3}{2}}[/tex]

Convert the mixed fraction in improper fraction.

[tex]\dfrac{-5\dfrac{1}{4}}{\dfrac{3}{2}}=\dfrac{-\dfrac{5\times 4+1}{4}}{\dfrac{3}{2}}[/tex]

[tex]\dfrac{-5\dfrac{1}{4}}{\dfrac{3}{2}}=\dfrac{-\dfrac{20+1}{4}}{\dfrac{3}{2}}[/tex]

[tex]\dfrac{-5\dfrac{1}{4}}{\dfrac{3}{2}}=\dfrac{-\dfrac{21}{4}}{\dfrac{3}{2}}[/tex]

Use the reciprocal of the divisor.

[tex]\dfrac{-5\dfrac{1}{4}}{\dfrac{3}{2}}=-\dfrac{21}{4}\times \dfrac{2}{3}[/tex]

[tex]\dfrac{-5\dfrac{1}{4}}{\dfrac{3}{2}}=-\dfrac{21\times 2}{4\times 3}[/tex]

[tex]\dfrac{-5\dfrac{1}{4}}{\dfrac{3}{2}}=-\dfrac{42}{12}[/tex]

[tex]\dfrac{-5\dfrac{1}{4}}{\dfrac{3}{2}}=-\dfrac{7}{2}[/tex]

Therefore, the correct value of given fraction is [tex]-\dfrac{7}{2}[/tex].

Three mistakes of Esmerelda are:

1. Esmerelda added the numerators.

2. Esmerelda added the denominators.

3. Esmerelda did not use the reciprocal of the divisor.

Answer:

B,C,E

Step-by-step explanation: