Explakjbkhbjhbjnatip[ok[okoon:
[tex]\sqrt[n]{x} \int\limits^a_b {x} \, dx \geq x^{2} \sqrt{x} \neq \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \pi \sqrt[n]{x} \frac{x}{y} \alpha \beta x_{123} \\ \leq \left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \geq \geq \geq \geq x^{2} x^{2} x^{2} \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\rig[/tex]