Respuesta :

Answer:

The simplest radical form is [tex]9\sqrt{5}[/tex] ⇒ (c)

Step-by-step explanation:

To simplify any square root;

  • Factorize the number under the root using prime numbers
  • Take out the root any number repeated twice as one number

Examples:

1. Simplify [tex]\sqrt{8}[/tex]

factorize 8 using prime numbers

8 = 2 × 2 × 2, then [tex]\sqrt{8}=\sqrt{(2)(2)(2)}[/tex]

Take two of 2 out the root, then [tex]\sqrt{8}=2\sqrt{2}[/tex]

2. Simplify [tex]\sqrt{18}[/tex]

factorize 18 using prime numbers

18 = 2 × 3 × 3, then [tex]\sqrt{18}=\sqrt{(2)(3)(3)}[/tex]

Take the two 3 out the root, then [tex]\sqrt{18}=3\sqrt{2}[/tex]

Let us simplify [tex]3\sqrt{45}[/tex]

∵ 45 = 3 × 3 × 5

∴ [tex]3\sqrt{45}=3\sqrt{(3)(3)(5)}[/tex]

→ Take the two 3 out by one 3

∴  [tex]3\sqrt{45}=3(3)\sqrt{5}[/tex]

→ Multiply the numbers out the root

∴ [tex]3\sqrt{45}=9\sqrt{5}[/tex]

The simplest radical form is [tex]9\sqrt{5}[/tex]