Answer:
Perimeter of ΔABC =32.31 units
Area of the triangle ABC = 47.81 sq. unit
Step-by-step explanation:
In triangle ABC
[tex]\angle A = 60^{\circ}\\\angle C = 45^{\circ}[/tex]
Angle sum property of triangle : The sum of the measures of the all angles of triangle is 180°
[tex]\angle A + \angle B + \angle C = 180^{\circ}\\60 + \angle B + 45 = 180\\\angle B + 105 = 180\\\angle B = 75^{\circ}[/tex]
Now we are supposed to find the perimeter and the area of the ΔABC
We will use the sine rule to find the lengths of sides BC and AC
Sine rule : [tex]\frac{Sin A}{BC}=\frac{Sin B}{AC}=\frac{Sin C}{AB}[/tex]
[tex]\frac{Sin 60}{BC}=\frac{Sin 75}{AC}=\frac{Sin 45}{9}\\BC \times sin(45) = 9 \times sin(60)\\ BC = 11.02[/tex]
[tex]AC \times sin(45) = 9 \times sin(75)[/tex]
AC = 12.29
Perimeter of ΔABC = AB + BC + AC
Perimeter of ΔABC = 9 + 11.02 + 12.29 =32.31 units
Area by using the sine rule:
Area of the triangle ABC =[tex]\frac{1}{2} (AB)(BC) sin B[/tex]
Area of the triangle ABC =[tex]\frac{1}{2} (9)(11) sin(75)[/tex]
Area of the triangle ABC = 47.81 sq. unit