Answer:
The value in m/s [tex]v_{a} = 111 \ m/s [/tex]
The value in km/h [tex]v_{a} = 400\ km/h [/tex]
Explanation:
Generally the average velocity of the helicopter is mathematically represented as
[tex]v_{a} = \frac{\Delta D}{ t}[/tex]
substituting [tex]3.33 km = 33.3*10^3\ for\ \Delta D[/tex] and 30.0 s for t
We have
[tex]v_{a} = \frac{33.3 *10^{3}}{ 30}[/tex]
=> [tex]v_{a} = 111 \ m/s [/tex]
Now converting to km/h
[tex]v_{a} = 111 * \frac{3600 *\frac{s}{h} }{1*10^{-3} *\frac{km}{m}} [/tex]
=> [tex]v_{a} = 400\ km/h [/tex]