Respuesta :

Answer:

m[tex]\angle[/tex]F = 34°

Step-by-step explanation:

If E and F are complementary I means that the sum of their angles add up to 90° since all complementary angles have the sum of their angles equal to 90°

To find m[tex]\angle[/tex]F add m[tex]\angle[/tex]E and m[tex]\angle[/tex] F and equate it to 90 to find x then substitute it into the expression for m[tex]\angle[/tex]F

Thats

m[tex]\angle[/tex]E + m[tex]\angle[/tex]F = 90

[tex]\rarr[/tex] 9x - 38 + 2x + 40 = 90

[tex]\rarr[/tex] 11x + 2 = 90

[tex]\rarr[/tex] 11x = 90 - 2

[tex]\rarr[/tex] 11x = 88

Divide both sides by 11

x = 8

Now we have

if m [tex]\angle[/tex]F = 9x - 38

m[tex]\angle[/tex] F = 9( 8) - 38

m[tex]\angle[/tex]F = 72 - 38

We have the final answer as

m[tex]\angle[/tex]F = 34°

Hope this helps you