Identify which line from the graph the following right triangles could lie on.

Answer:
Step-by-step explanation:
Slope of line A = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]
= [tex]\frac{9}{3}[/tex]
= 3
Slope of line B = [tex]\frac{9}{6}[/tex]
= [tex]\frac{3}{2}[/tex]
Slope of line C = [tex]\frac{6}{8}[/tex]
= [tex]\frac{3}{4}[/tex]
5). Slope of the hypotenuse of the right triangle = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]
= [tex]\frac{90}{120}[/tex]
= [tex]\frac{3}{4}[/tex]
Since slopes of line C and the hypotenuse are same, right triangle may lie on line C.
6). Slope of the hypotenuse = [tex]\frac{30}{10}[/tex]
= 3
Therefore, this triangle may lie on the line A.
7). Slope of hypotenuse = [tex]\frac{18}{24}[/tex]
= [tex]\frac{3}{4}[/tex]
Given triangle may lie on the line C.
8). Slope of hypotenuse = [tex]\frac{21}{14}[/tex]
= [tex]\frac{3}{2}[/tex]
Given triangle may lie on the line B.
9). Slope of hypotenuse = [tex]\frac{36}{24}[/tex]
= [tex]\frac{3}{2}[/tex]
Given triangle may lie on the line B.
10). Slope of hypotenuse = [tex]\frac{48}{16}[/tex]
= 3
Given triangle may lie on the line A.