Answer:
Step-by-step explanation:
Given P to be the point that divides the coordinates J and K in the ratio 1:3
then the coordinate of point P will be xpressed as;
P(X, Y) = [tex](\frac{bx_1+ax_2}{b+a}, \frac{by_1+ay_2}{b+a})[/tex]
Given J = (-4, 11) and K = (8, -1)
[tex]x_1 = -4, y_1 = 11, x_2 = 8 \ and \ y_2 = -1, a = 1, b = 3[/tex]
substituting the given parameters into the line division formula
[tex]P(X, Y) = (\frac{3(-4)+1(8)}{3+1}, \frac{3(11)+(1)(-1)}{3+1})\\\\P(X, Y) = (\frac{-12+8}{4}, \frac{33-1}{4})\\\\P(X, Y) = (\frac{-4}{4}, \frac{32}{4})\\\\P(X, Y) = (-1, 8)[/tex]
Hence the coordinates of P is (-1, 8)