Answer:
[tex]\mathbf{g'(x) = 5 \times \dfrac{(25x^2-1)}{(25x^2+1)}- 4 \times \dfrac{(16x^2-1)}{(16x^2+1)}}[/tex]
Step-by-step explanation:
The question can be better structured and represented as :
[tex]g(x) = \int ^{5x}_{4x} \dfrac{u^2-1}{u^2+1} \ du[/tex]
now the derivative of the function of g(x) is g'(x) which is equal to:
[tex]g'(x) = \dfrac{(5x)^2-1}{(5x)^2 +1 }\dfrac{d}{dx}(5x) - \dfrac{(4x)^2-1}{(4x)^2 +1 }\dfrac{d}{dx}(4x)[/tex]
[tex]\mathbf{g'(x) = 5 \times \dfrac{(25x^2-1)}{(25x^2+1)}- 4 \times \dfrac{(16x^2-1)}{(16x^2+1)}}[/tex]