A ball thrown vertically upward is caught by the thrower after 4.00 sec. Find the initial velocity of the ball and the maximum height it reaches.

Respuesta :

Answer:

Initial velocity = 39.2m/s

Maximum height is 78.4m

Explanation:

Given

[tex]Time, t = 4s[/tex]

Solving (a): Initial Velocity

Using first law of motion:

[tex]v = u + at[/tex]

Where

[tex]v = final\ velocity = 0[/tex]

[tex]u = iniital\ velocity = ??[/tex]

[tex]a = acceleration = -g[/tex] [g represents acceleration due to gravity]

[tex]t = 4[/tex]

Substitute these value in the above formula:

[tex]v = u + at[/tex]

[tex]0 = u - g * 4[/tex]

[tex]0 = u - 9.8 * 4[/tex]

Take g as 9.8m/s²

[tex]0 = u - 39.2[/tex]

[tex]u = 39.2m/s\\[/tex]

Hence, initial velocity = 39.2m/s

Solving (b): Maximum Height

This will be solved using second equation of motion

[tex]s = ut + \frac{1}{2}at^2[/tex]

This becomes

[tex]s = ut - \frac{1}{2}gt^2[/tex]

Substitute values for u, t and g

[tex]s = 39.2 * 4 - \frac{1}{2} * 9.8 * 4^2[/tex]

[tex]s = 156.8 - 78.4[/tex]

[tex]s = 78.4[/tex]

Hence, the maximum height is 78.4m