Answer:
Midpoint = (1,3)
Distance = 10√2
Step-by-step explanation:
Midpoint
[tex]Midpoint = \left(\frac{x_2+x_1}{2},\:\:\frac{y_2+y_1}{2}\right)\\\\\left(x_1,\:y_1\right)=\left(-4,\:8\right),\:\left(x_2,\:y_2\right)=\left(6,\:-2\right)\\\\=\left(\frac{6-4}{2},\:\frac{-2+8}{2}\right)\\\\=(\frac{2}{2} , \frac{6}{2} )\\\\Simplify\\=\left(1,\:3\right)[/tex]
Distance
[tex]Distance = \sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\\\\(-4,8)=(x_1,y_1)\\(6,-2)=(x_2,y_2)\\\\d=\sqrt{\left(6-\left(-4\right)\right)^2+\left(-2-8\right)^2}\\\\d = \sqrt{(6+4)^2+(-2-8)^2}\\ \\d = \sqrt{(10)^2 +(-10)^2}\\ \\d = \sqrt{100+100} \\\\d = \sqrt{200}\\ \\d = 10\sqrt{2}[/tex]