Answer:
The equation is missing in the question. The equation is [tex]$10 m + 5(m/s^2)t^2+3(m/s^3)t^3$[/tex]
a). [tex]$v=10 t +9t^2$[/tex] , the horse will not turn.
b). a(t) = 10 + 18t
Explanation:
Given :
[tex]$x(t)=10 m + 5(m/s^2)t^2+3(m/s^3)t^3$[/tex]
∴ At t =0, x = 10 m
a). Velocity as a function of time
[tex]$v = \frac{dx}{dt} $[/tex]
= [tex]$10 t +9t^2$[/tex]
Turning velocity must be zero.
v(t) = 0
[tex]$10 t +9t^2=0$[/tex]
[tex]$\therefore t = 0 \text{ or}\ t =-\frac{10}{9}$[/tex]
Taking the positive value of time.
The horse will not turn.
b). Acceleration as a function of time.
[tex]$a(t)=\frac{dv}{dt}$[/tex]
= 10 + 18t
∴ a(t) = 10 + 18t