Respuesta :
Answer:
Tomorrow = 25 students
In 2 days = 44 students
In 40 days = 40 students
Step-by-step explanation:
Let A = watch more than an hour
B = watch less than an hour
First of all we need to make a transition matrix
[tex]P = \begin{bmatrix}0 & 1\\ 0.25 & 0.75\end{bmatrix} \binom{A}{B}[/tex]
Also we are given,
X = [100, 100]
A B
Therefore,
[tex]XP=\begin{bmatrix}100 & 100\end{bmatrix} \times \begin{bmatrix}0 & 1\\ 0.25 & 0.75\end{bmatrix}[/tex]
= [25, 175]
Thus, 25 students will watch television for an hour or more tomorrow.
Now for 2 days,
[tex]XP^2=\begin{bmatrix}100 & 100\end{bmatrix} \times \begin{bmatrix}0 & 1\\ 0.25 & 0.75\end{bmatrix} \times \begin{bmatrix}0 & 1\\ 0.25 & 0.75\end{bmatrix}[/tex]
= [43.75, 156.25]
Hence, 44 students will watch television for an hour or more in 2 days.
Now in 40 days,
[tex]XP^40=\begin{bmatrix}100 & 100\end{bmatrix} \times \begin{bmatrix}0 & 1\\ 0.25 & 0.75\end{bmatrix}^{40}[/tex]
But instead of multiplying the above matrix 40 times, we can we can find the long term division method.
Let
x = long term distribution of students watching television >1 hour
y = long term distribution of students watching television <1 hour
Therefore,
[tex]\begin{bmatrix}x & y\end{bmatrix} \times \begin{bmatrix}0 & 1\\ 0.25 & 0.75\end{bmatrix} = \begin{bmatrix}x & y\end{bmatrix}[/tex]
⇒ 0.25 y = x
And we know that x + y = 200
∴ 0.25 y + y = 200
∴ y = 160
And x = 40 ( ∵ x + y = 200)
Thus 40 students will watch televisions in the 40 days for an hour or more.